

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/featherduster/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/featherduster/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

FeatherDuster (and Cryptanalib)

[image: FeatherDuster logo]
[image: Build Status] [https://travis-ci.org/nccgroup/featherduster]

FeatherDuster is a tool written by Daniel “unicornfurnace” Crowley of NCC Group for breaking crypto which tries to make the process of identifying and exploiting weak cryptosystems as easy as possible. Cryptanalib is the moving parts behind FeatherDuster, and can be used independently of FeatherDuster.

Why “FeatherDuster”? There’s an in-joke amongst some crypto folk where using crypto poorly, or to solve a problem that crypto isn’t meant to solve is called “sprinkling magical crypto fairy dust on it”. FeatherDuster is for cleaning up magical crypto fairy dust.

This is a beta release of FeatherDuster. Things may be broken.

If you find a bug, please file an issue. Pull requests are welcome and encouraged.

FeatherDuster Usage

python featherduster.py [ciphertext file 1] ... [ciphertext file n]

When importing samples through positional arguments, each file will be consumed and treated as its own ciphertext, regardless of the format of the files. FeatherDuster has the ability to automatically recognize and decode common encodings, so it’s okay if these files contain encoded samples.

Once the FeatherDuster console launches, alternate methods of ciphertext import will be available, specifically the ability to import a file with newline-separated samples where each line will be treated as a distinct sample, like so:

68657920636f6f6c
796f752072656164
74686520726561646d65

and the ability to specify a single ciphertext in FeatherDuster through command-line input. Since this input will terminate on a newline, it is recommended to use some form of encoding in case the sample contains a newline.

Cryptanalib Usage

Cryptanalib can be used separately of FeatherDuster to make Python-based crypto attack tools. Documentation for cryptanalib functions can be accessed through the Python help() function like so:

>>> import cryptanalib as ca
>>> dir(ca) # output edited for a cleaner README file
[... 'analyze_ciphertext', 'batch_gcd', 'bb98_padding_oracle', 'break_alpha_shift', 'break_ascii_shift', 'break_columnar_transposition', 'break_generic_shift', 'break_many_time_pad', ...]
>>> help(ca.bb98_padding_oracle)

Help on function bb98_padding_oracle in module cryptanalib:

bb98_padding_oracle(ciphertext, padding_oracle, exponent, modulus, verbose=False, debug=False)
 Bleichenbacher's RSA-PKCS1-v1_5 padding oracle from CRYPTO '98

 Given an RSA-PKCS1-v1.5 padding oracle and a ciphertext,
 decrypt the ciphertext.

 ciphertext - The ciphertext to decrypt
 padding_oracle - A function that communicates with the padding oracle.
 The function should take a single parameter as the ciphertext, and
 should return either True for good padding or False for bad padding.
 exponent - The public exponent of the keypair
 modulus - The modulus of the keypair
 verbose - (bool) Whether to show verbose output
 debug - (bool) Show very verbose output

The Cryptanalib analysis engine

The analysis engine in Cryptanalib, used by FeatherDuster, can automatically detect encodings and decode samples. The engine assumes that all samples are generated with the same process (for instance, base64encode(aes_encrypt(datum))), but can handle mixed samples to some degree. Currently, Cryptanalib can detect and decode the following encoding schemes:

	Vanilla Base64

	ASCII hex-encoding

	Zlib compression

Cryptanalib’s analysis engine can detect a number of properties in the analysis phase, too:

	Low entropy ciphertext (Useful for detecting homebrew ciphers)

	Block cipher usage vs Stream cipher usage

	ECB mode

	CBC mode with fixed IV

	Hash algorithm (engine will note that length extension attacks may apply with Merkle-Daamgard based hash algos)

	OpenSSL formatted ciphertext

	Stream cipher key reuse

	RSA keys with private components

	Insufficiently large RSA moduli

	RSA modulus reuse

	Transposition-only cipher

Contributing

If you’d like to contribute to FeatherDuster or Cryptanalib, you can do so in a few ways:

	Submitting bug reports and enhancement requests through github issues

	Submitting pull requests to resolve issues

	Contributing attack or helper functions to Cryptanalib

	Contributing FeatherModules

The official page for FeatherDuster and Cryptanalib can be found at https://github.com/nccgroup/featherduster.

Writing FeatherModules

If you want to write a FeatherModule, the format is relatively simple. A FeatherModule requires:

	A main function which operates on a list of samples

	Metadata
	A reference to the main function

	A module name

	The module’s category

	Keywords for analysis results

	Options, if any, with default values in the form of strings

Module main functions should return a list of strings if successful, False if unsuccessful,
or True if successful with no output.

An example module can be found under examples/example_feathermodule.py.

Custom non-trunk modules

Custom modules can be placed in the feathermodules/custom section, where they will be automatically recognized and loaded at runtime. As such, modules that do not meet the contribution requirements listed below can be developed and released as third-party modules and can be used independently of their acceptance into or rejection from the FeatherDuster trunk.

Analysis results keywords

	ecb - Use of ECB mode

	cbc_fixed_iv - Use of CBC mode with a fixed key/IV

	block - Use of a block cipher

	md_hashes - Message Digest family hashes

	sha1_hashes - SHA1 hashes

	sha2_hashes - SHA2 hashes

	individually_low_entropy - Samples pass entropy tests when analyzed individually

	collectively_low_entropy - Samples pass entropy tests when analyzed collectively

	key_reuse - Samples show signs of key reuse

	rsa_key - An RSA key was found in the samples

	rsa_n_reuse - Two or more RSA keys were found to have the same modulus

	rsa_private_key - An RSA private key was found in the samples

	rsa_small_n - An RSA key with a small modulus was found in the samples

Code structure

	Cryptanalysis library is in cryptanalib/
	Primitives like GCD and CRT in cryptanalib/helpers.py

	Classical/silly crypto solvers in cryptanalib/classical.py

	Modern crypto solvers in cryptanalib/modern.py

	Frequency distribution data is in cryptanalib/frequency.py

	FeatherDuster UI is at featherduster.py

	FeatherModules are at feathermodules/
	Classical cipher modules at feathermodules/classical/

	Block cipher modules at feathermodules/block/

	Stream cipher modules at feathermodules/stream/

	Hash function modules at feathermodules/hash/

	Asymmetric cipher modules at feathermodules/pubkey/

	Auxiliary modules at feathermodules/auxiliary/

	Custom drop-in directory at feathermodules/custom/ (don’t put things here please)

	Example challenges / scripts / modules at examples

	Unit tests at tests

	Utilities at util

Contribution requirements

There are a few rules for contributing:

	Code must be your own, or must be released under a license which allows its use in other projects.

	The license on the code must be compatible with the BSD license used by FeatherDuster/Cryptanalib.

	No additional dependencies may be introduced.

	Code must be OS-independent.

	Code must pass unit tests. Execute python -c 'from tests import *' in the featherduster directory to execute all unit tests.

Installation

git clone https://github.com/nccgroup/featherduster.git
cd featherduster
python setup.py install
sudo apt-get install libgmp3-dev

Dependencies

Python 2.x
GMPy (which itself depends on GMP)
PyCrypto
ishell (which itself depends on readline and ncurses)

Installation errors

Missing GMP

If you encounter a missing header error such as:

./src/gmpy.h:30:10: fatal error: 'gmp.h' file not found

OSX

Install gmp via brew brew install gmp then retry python setup.py install

Debian

Install gmp via apt-get sudo apt-get install libgmp3-dev

Missing GCC

If you’re having trouble installing PyCrypto on an Ubuntu variant, you may not have gcc installed. It’s possible to install PyCrypto through apt with apt-get install python-crypto.

Missing libncurses

If you encounter an error such as:

/usr/bin/ld: cannot find -lncurses
collect2: error: ld returned 1 exit status
error: Setup script exited with error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

Ubuntu

Install libncurses with sudo apt-get install libncurses-dev.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_images/fd_logo.png

_static/minus.png

_static/file.png

